Affiliate Post Computer and IT ENGINEERING Statistics

Course on Statistics with Python by University of Michigan [Online Classes, 2 Months]: Register Now!

By: Rashmi | 25 Nov 2019 1:58 PM

About the Course

This specialization is designed to teach learners beginning and intermediate concepts of statistical analysis using the Python programming language. Learners will learn where data come from, what types of data can be collected, study data design, data management, and how to effectively carry out data exploration and visualization. They will be able to utilize data for estimation and assessing theories, construct confidence intervals, interpret inferential results, and apply more advanced statistical modeling procedures. Finally, they will learn the importance of and be able to connect research questions to the statistical and data analysis methods taught to them.

What you will Learn?

  • Create and interpret data visualizations using the Python programming language and associated packages & libraries
  • Apply and interpret inferential procedures when analyzing real data
  • Apply statistical modeling techniques to data (ie. linear and logistic regression, linear models, multilevel models, Bayesian inference techniques)
  • Understand importance of connecting research questions to data analysis methods.

There are 3 Courses in this Specialization

  • Understanding and Visualizing Data with Python
  • Inferential Statistical Analysis with Python
  • Fitting Statistical Models to Data with Python

Instructors

  • Brenda Gunderson Lecturer IV and Research Fellow Department of Statistics
  • Brady T. West Research Associate Professor Institute for Social Research
  • Kerby Shedden Professor Department of Statistics

To enroll for this course, click the link below.

Course on Statistics with Python by University of Michigan

Note: NoticeBard is associated with Coursera through an affiliate programme.

Related Posts

About the Author

Rashmi

Comment via Facebook

Comment via Website

Your email address will not be published. Required fields are marked *